

## Low Flow Anesthesia in Pediatric Patients

Todd Glenski MD, MSHA<sup>1</sup> & Suryakumar Narayanasamy MD<sup>2</sup>

<sup>1</sup>Children's Mercy Hospital, University of Missouri – Kansas City, <sup>2</sup>Cincinnati Children's Hospital Medical Center

- 5% of the hospital carbon footprint is attributed to **volatile anesthetic agents** which are potent greenhouse gases. <u>Utilizing low flow anesthesia is one of the most impactful sustainability efforts</u> as an individual anesthesia provider.
- Low flow anesthesia can be applied throughout the anesthetic. Strategies for safely reducing flows during induction and maintenance are described.

### Easy method to achieve minimum safe fresh gas flow:

| Induction: |       | _   | Maintenance:                   | Hint:             |  |
|------------|-------|-----|--------------------------------|-------------------|--|
| <20kg      | 3 lpm |     |                                |                   |  |
| 20-30kg    | 4 lpm | L L | $<$ 50kg, use $\leq$ 500ml/min | 50kg/50:50/500ml  |  |
| 30-40kg    | 5 lpm |     | 50% O2: 50% Air mixture        |                   |  |
| >40kg      | 6 lpm |     |                                |                   |  |
|            |       | -   | ≥50kg, use ≤1 lpm              | Always use ≤1 lpm |  |

# Complex method to achieve minimum safe flow:

# Induction:

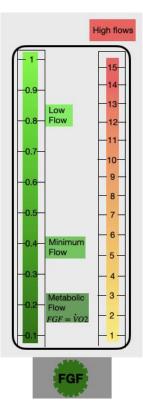
- Set FGF to exceed minute ventilation (V<sub>E</sub>) to create open circuit condition: 150 mL x weight (kg) (V<sub>E</sub>~120 ml/kg estimate based upon VCO<sub>2</sub> from Brody's equation)
- GOAL: Acceptable time to complete induction. Priming the circuit can speed up induction, but can be wasteful

### Maintenance:

- $\triangleright$  Calculate the patient's O<sub>2</sub> consumption (5 ml/kg/min)<sup>1</sup>
- Account for gas analyzer sample volume\* (200 ml/min) and leaks (100 ml/min)
- > Minimum FGF =  $O_2$  consumption + leak + gas analyzer volume
- ➤ Utilize Low Flow Wizard (Drager) & EcoFlow (GE)

<u>Sevoflurane</u> – FGF less than 1 liter per minute is safe and recommended to minimize waste. Newer absorbents do not generate compound A and there is no evidence in humans of renal dysfunction after Sevoflurane exposure.<sup>2,3.</sup>

## **Safety Considerations**


- Monitor inspired oxygen and end-tidal agent concentrations to avoid hypoxic gas mixtures and inadequate anesthesia.
- > Set lower limit alarms for inspired oxygen and end-tidal agent concentrations
- > Vaporizer dial may need to be at a higher setting to reach a certain MAC.

\* Certain Drager models allow analyzer sample gas to return to circuit- check your machine manual.

**Resources:** Practice green health.org <u>Anesthetic Gas How-to Guide</u>; ASA <u>Greening the O.R. Manual</u> **References:** 

- 1. Feldman JM: Managing fresh gas flow to reduce environmental contamination. Anesth Analg 2012; 114: 1093-101
- 2. Kennedy RR, Hendrickx JF, Feldman JM: There are no dragons: Low-flow anaesthesia with sevoflurane is safe. Anaesth Intensive Care 2019; 47: 223-225
- 3. Sondekoppam, R.V., Narsingani, K.H., Schimmel, T.A. et al. The impact of sevoflurane anesthesia on postoperative renal function: a systematic review and meta-analysis of randomized-controlled trials. Can J Anesth 2020: 67, 1595–1623.

Picture Courtesy: Diane Gordon, MD

